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Abstract

An open problem is described: reduce offline nonconvex stochastic optimization to regret minimization
in online convex optimization. The conjectured reduction would explain the success of adaptive gradient
methods for deep learning. A prize of 500$ is offered to the winner.

1 Motivation

Adaptive gradient methods are the most widely used optimization algorithms for training of deep neural
networks 1. The theory for these algorithms, starting from Adagrad [5, 10], is based on regret minimization
in the context of online convex optimization [7].

The regret bounds of Adagrad can be better or worse than stochastic gradient descent, up to square root
of the dimension factor, depending on the data. This can be very significant, as the dimension in deep neural
network training is extremely large, and could potentially explain the performance improvements.

However, the regret guarantees of Adagrad imply faster convergence only for convex optimization. For
nonconvex optimization, a different reduction from regret minimization to optimization is required, and this
is the subject of this open problem.

2 The question

You are given an algorithm for online convex optimization A, that has a guaranteed worst case regret bound
2. Given a convex constraint set K ⊆ Rd and an arbitrary sequence of convex cost functions f1, .., fT : K 7→ R,
the algorithm guarantees that ∑

t

ft(xt)− min
x∗∈K

∑
t

ft(x
⋆) ≤ RegretT (A).

For example, the online gradient descent algorithm guarantees RegretT (OGD) ≤ 3
2GD

√
T , where D is

the diameter of K, and G is an upper bound on the Lipschitz constant of the loss functions {ft}.
The problem is to design a black box reduction from offline stochastic nonconvex optimization with a

guaranteed performance that depends on the regret of A. The performance metric we are looking for is
average gradient norm across iterations, i.e. finding an approximate stationary point. More precisely, given
a nonconvex β-smooth function f : K 7→ R, we would like to obtain a sequence of points x1, ...,xT ∈ K such
that

1

T

T∑
t=1

E∥∇f(xt)∥2 ≤ O

(√
β · RegretT (A)

T

)
. (1)

Notice that this theorem implies the convergence rate of stochastic gradient descent for smooth nonconvex
optimization, as per Theorem 3.4 in [6], when using the online gradient descent algorithm and its regret
bound.

1at the time of writing, the Adam algorithm is one of the most widely cited research in the history of science [1]
2we assume this regret bound is deterministic for simplicity, but generalizations can be considered.
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Replacing the regret bound of Adagrad in the conjectured equation (1) would give a similar rate in terms
of number of iterations, i.e. 1√

T
. However, in terms of the dimension, the regret bound of Adagrad would

imply convergence up to
√
d faster! This would also apply to Adam [9] and basically most adaptive gradient

methods whose theory is based on regret in online convex optimization.

3 Existing and recent progress

A reduction similar to the one proposed was put forth in previous works [11, 12, 2]. An algorithmic template
from the reduction given in [2] is presented in Algorithm 1.

Algorithm 1 Non-convex to convex reduction

Input: OCO algorithm A, β-smooth objective f , stochastic gradient oracle, parameters λ,w
for t = 1 to T do
Let ft(x) = f(x) + λ

2 ∥x− xt∥2
Apply A to obtain xt+1 after w steps of the algorithm starting from xt, using stochastic gradient oracle.

end for
return xt such that t = argmint ∥∇f(xt)∥.

Theorem A.2 in [2] 3 gives a provable convergence rate for this reduction in terms of the regret of the
OCO algorithm A. It is, however, unsatisfactory since the regret is taken over parts of the sequence rather
than the entire sequence, and other subtleties.

Notable progress has been made recently in the work of [4], who give a black-box reduction with provable
guarantees. However, their approach implies a bound similar to that of Equation (1) but with the adaptive
regret notion [8] rather than regret.

A similar approach was attempted in [3], where the following procedure was studied:

Algorithm 2 NC2C reduction, second variant

Input: OCO algorithm A, β-smooth objective function f , stochastic gradient oracle.
for t = 1 to T do
Let ft be the stochastic loss (e.g. i.i.d. sampled example).
Let f̃t(x) = ft(x) + β∥x− xt−1∥2
Apply single step of A to obtain xt+1 = A(f̃1, .., .f̃t).

end for
return xt such that t = argmint ∥∇f(xt)∥.

A similar bound to (1) can be obtained, but this time with the dynamic regret notion rather than regret.
The appeal of this reduction is that applying it with Adagrad (or Adam, or any other adaptive gradient
method), is exactly running it on the nonconvex function directly with stochastic gradients.

4 NC2C2 Guarantee

Let DynamicRegretA(f1:T , x̂1:T ) denote the expected dynamic regret of algorithm A over a sequence of
functions, f1, ..., ft, under the sequence of comparators (x̂1, . . . , x̂T ), i.e.

DynamicRegretA(f1:T , x̂1:T ) =

T∑
t=1

ft(xt)− ft(x̂t).

3which is sometimes referred to in the COLT community as “Naman’s Lemma”.
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Lemma 1. Suppose the function f satisfies f(x) − f(y) ≤ M ∀ x,y, and let x∗
t denote a minimizer of

f̄t(x) = f(x) + β∥x− xt−1∥2. Then the iterates xt in Algorithm 2 satisfy

E

[
1

T

T∑
t=1

∥∇f(xt)∥2
]
≤ 6β

T

(
M +DynamicRegretA(f̃1:T ,x

∗
1:T )

)
,

where the expectation is taken over the randomness of the examples and the algorithm A.

Proof. Let Et denote conditioning on all randomness up to time t, then we have the following descent lemma,

Et [f(xt−1)− f(xt)] = Et

[
f̄t(xt−1)− f̄t(xt) + β∥xt−1 − xt∥22

]
= Et,ft

[
f̃t(xt−1)− f̃t(xt) + β∥xt−1 − xt∥22

]
≥ Et,ft

[
f̃t(xt−1)− f̃t(x

∗
t )− (f̃t(xt)− f̃t(x

∗
t ))
]

= f̄(xt−1)− f̄t(x
∗
t )− Ext,ft

[
(f̃t(xt)− f̃t(x

∗
t ))
]

≥ 1

6β
∥∇f(xt−1)∥2 − Ext,ft

[
f̃t(xt)− f̃t(x

∗
t )
]
. (smoothness)

Rearranging,

∥∇f(xt−1)∥2 ≤ 6β
(
Et[f(xt−1)− f(xt)] + Et,ft

[
f̃t(xt)− f̃t(x

∗
t )
])

.

Summing up over the iterations and taking an unconditional expectation,

E

[
T∑

t=1

∥∇f(xt)∥2
]

≤ 6βE

[
T+1∑
t=2

f(xt−1)− f(xt) + (f̃t(xt)− f̃t(x
∗
t ))

]

≤ 6β

(
M + E

[
T+1∑
t=2

f̃t(xt)− f̃t(x
∗
t )

])
.

Thus the average gradient norm satisfies

E

[
1

T

T∑
t=1

∥∇f(xt)∥2
]
≤ 6β

(
M

T
+

1

T
E

[
T+1∑
t=2

f̃t(xt)− f̃t(x
∗
t )

])

≤ 6β

(
M

T
+

1

T
DynamicRegretA(f̃1:T ,x

∗
1:T )

)
.

5 The Prize

We offer 500$ for an efficient black-box reduction giving the bound (1).
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